
QUESTION 1 (15 Marks)

- a) Let z=5-i and w=3+2i, Express the following in the form a+ib where a,b are real numbers.
 - (i) z+w 1
 - (ii) z + iw 1
- b) Express $\frac{(1+3i)^2}{3+i}$ in the form a+ib where a and b are real numbers 2
- c) (i) Find the square roots of 16-30i. Give your answers in the form a+ib 2
 - (ii) Hence solve the equation $z^2 (3-i)z 2 + 6i = 0$
- d) (i) Express $z = -3\sqrt{3} + 3i$ in mod-arg form
 - (ii) Hence find the smallest positive integer n such that z n is real 1
- e) Let $P(z)=z^3+az^2+bz+c$ where a,b and c are real. Two of the roots of P(z)=0 are -2 and (-3+2i). Find the value of a,b and c.

In the diagram above, the locus of the point P representing the complex number z is graphed. Write down a possible equation in terms of z,b and α for the locus of P. Note that constants b and α are real.

QUESTION 2 (15 marks)

(a) On an Argand diagram sketch the locus of z satisfying

$$|z| = |z - 6 - 3i|$$

(ii)
$$\frac{1}{2}(z+z) = |z|-2$$

- (b) The complex number z lies on the locus $arg(z+i) = \frac{\pi}{4}$.
 - (i) Sketch the locus, showing any intercepts with the axes. 2
 - (ii) Find the least value of |z|
- (c) Let $z_1 = \frac{\sqrt{6} i\sqrt{2}}{2}$ and $z_2 = 1 i$
 - (i) Write z_1 and z_2 in mod-arg form 3
 - (ii) Show that $\frac{z_1}{z_2} = \cos \frac{\pi}{12} + i \sin \frac{\pi}{12}$
 - (iii) Find the value of $\frac{z_1}{z_2}$ in the form a+ib where a and b are in surd form.
 - Hence or otherwise find the exact surdic expression for $\cos \frac{\pi}{12}$

QUESTION 3 (15 Marks)

(a)

(i) Expand and simplify $(\cos \theta + i \sin \theta)^5$

2

(ii) Hence prove that $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$

2

(iii) Deduce that $\cos \frac{\pi}{10} \cos \frac{3\pi}{10} \cos \frac{7\pi}{10} \cos \frac{9\pi}{10} = \frac{5}{16}$

2

(b) (i) Use De Moivres' Theorem to prove that, if $2 \cos \theta = x + \frac{1}{x}$ then

 $2\cos n\theta = x^n + \frac{1}{x^n}$

1

(ii) Hence or otherwise ,solve the equation

 $5x^4 - 11x^3 + 16x^2 - 11x + 5 = 0$

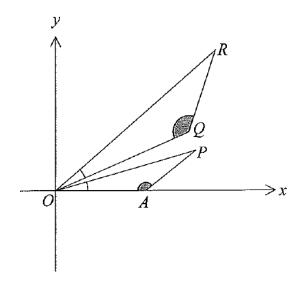
4

(c) (i) Given that ω is one of the non-real roots of $z^3 = 1$ show that $1 + \omega + \omega^2 = 0$

1

(ii) Using (i), or otherwise, show that

 $\left(\frac{\omega}{1+\omega}\right)^{k} + \left(\frac{\omega^{2}}{1+\omega^{2}}\right)^{k} = \left(-1\right)^{k} 2 \cos \frac{2}{3} k \pi \text{ where } k \in \mathbb{Z}$


3

QUESTION 4 (15 Marks)

(a) Let z be a complex number of modulus 3 and w be a complex number of modulus 1

Show that
$$|z - \omega|^2 = 10 - (z w + z \omega)$$

(b) In the figure below, the points P,Q and A represent the complex numbers z_1, z_2 and 1 respectively. By construction, $\angle OAP = \angle OQR$ and $\angle AOP = \angle QOR$. Explain why the point R represents the complex number z_1z_2

3

(c) A and B are two points in an Argand diagram representing the complex numbers $z_1 = -1$ and $z_2 = \cos \theta + i \sin \theta$ respectively where $\frac{\pi}{2} < \theta < \pi$.

C is the point representing the complex number $z_3 = z_1 + z_2$

(i) Sketch the quadrilateral OACB on an Argand digram where O is the point representing the complex 0.

Then mark an angle on the diagram which is equal to θ

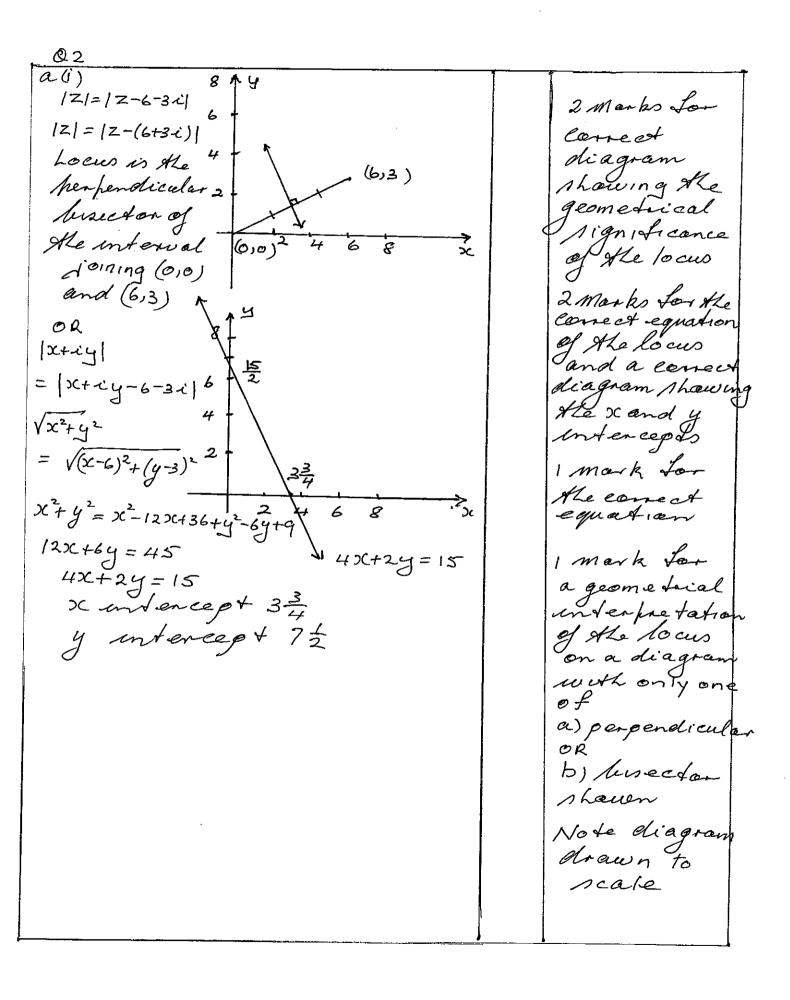
3

(ii) Let $z_4 = z_2 - z_1$

(
$$\alpha$$
) Show that $\frac{z_4}{z_3} = i \left(\frac{\sin \theta}{\cos \theta - 1} \right)$, hence find $\arg \left(\frac{z_4}{z_3} \right)$

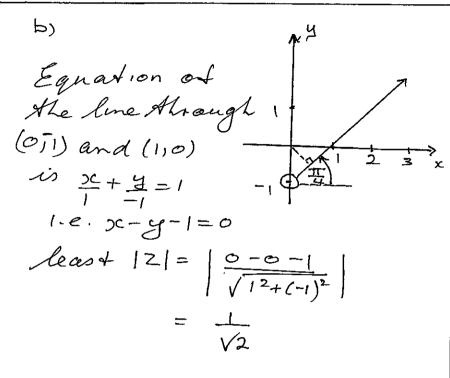
(β) Using α show that the diagonals of the quadrilateral OACB are perpendicular to each other.

3


pg1/2

MATHEMATICS Extension 2: Question. 1		
Suggested Solutions	Marks	Marker's Comments
(a) (1) $5-i+3i-2i=8-3i$ (b) $5-i+3i-2=3+2i$ (c) $(1+3i)^2=1+6i-9$ 3+i=3+i =-8+6i=3-i		,
		·
$\frac{1}{5} + \frac{131}{5}$ (C) (i) $(x+iy)^2 = 16 - 30i$ $x,y \in \mathbb{R}$ $\frac{1}{5} + \frac{131}{5}$		
$3xy = -30 - (2)$ $y = -15/2 - 505 into (1)$ $x^2 - 225 = 16$ $x^2 - 16x^2 - 225 = 0$		many methods -1 for process -1 for answer
$(x^{2}-25)(x^{2}+9)=0$ $x^{2}=25 \qquad \text{or} \qquad x^{2}=-9$ $x=\pm 5 \qquad \text{no real solution}$ $\cos y=-3 \text{ or} \qquad 3$ $\text{square roots are } 5-3i,-5+$ $(ii) \qquad z=(3-i)+\sqrt{(3-i)^{2}-4(1)(-2+6i)}$,	
$= (3-i) \pm \sqrt{9-6i-1+8-24i}$	(①

pg 2/2


		1
MATHEMATICS Extension 2: Question		4
Suggested Solutions	Marks	Marker's Comments
Z=3-8+116-308		
2		
= 3-1 ± (5-3i) from (i)		
		•
$= 4 - 2 \varepsilon \text{or} -1 + \varepsilon$	(1)	
$= 4 - 2\xi \text{or} -1 + c$		
(d) (i) \ (=\(3\sqrt{3}\) \ + 32		
(19) : -=6		It your than
	()	Cosher it / cirs
9= 34		LI BUIS
		answer is 6 cus?
-353+30=6 (cos 5] +isin5	<u> </u>	(1) mark.
. ^ ^	り ノ	
(II) 2 = 6 (cos 51 + is s 51)		
	, ,	_ \
= 6" (cos STID + ISIN STID) (De Mo	wres	Tyeoren)
to be real then sin/straj=0		
an interes .		
Soll must be a is a positive integer	:	
<u></u>	(1)	right or wrong
eaA=6		
e) since the coefficients are all real the		
complex toots are conjugate pairs		
so costs are -2-3700 and -3-20		
	_	_
$\frac{1}{2}\left(2+2\right)\left(2+(3-2i)\right)\left(2+(3+2i)\right)$		many ways
= (= 12)(=2 1/= + 12)		of Down
$= (z+2)(z^2+6z+13)$		this 3
= 23 + 822 + 252 + 16	(1)	•
		question
a = 8, b = 25, c = 76	(1)	1
$(+)$ aca $(\frac{2-b}{311}) = 2$, ~ 1 V
0 1270		right or
OCC GCG (2-1) - GCG (2+1) = ~	$ \mathcal{T} $	Ų
and the second second		wrong
		\mathcal{O}
OC ora (2+b) - ara(2-b) = -2		
NAME AND COLUMN COLUMN AND ALL MA From A design Assessment in followarded Mile color template VA h		

\\TITAN\StaffHome\$\woh08\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4_half Ls.doc

a) $\frac{1}{2}(2+\overline{2})=|2|-2$ (ii) 1 (>(+x-iy+x-iy)=1)=1)=1=1= $3C = \sqrt{3C^2 + y^2} - 2$ X+2= 1x2+42 (x+2)2 = x2+y2 $x^2 + 4x + 4 = x^2 + y^2$ 42 = 4x+4 y = = 4 (x+1) < larabola Vertesc at (-1,0) ascis of symmetry Is the ocanis Intercepts on y axis of ±2

3 Marks for correct Cartesian equation of the locus with a sketch Showing the intercepts on the axes 2 Marks La a correct equation 1 Mark Lon an incorrect equation resulting from 1 (x+iy+x-iy) = 22+42-2 Som-e Candidates who wrote y= ± 2/x+1 only drew the top half of the parabola.

ΒR

$$AB^{2} = 1^{2} + 1^{2}$$

$$= 2$$

$$AB = \sqrt{2}$$

$$OD = \frac{1}{2}AB$$

$$= \frac{1}{2} \times \sqrt{2}$$

$$= \frac{1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

2 Marks for correct sketch Showing open Circle at (0,-1) and aray through (100) 1 Mark For Correct sketch without arrow on ray 1 Mark Ja Correct sketch without open eirele Ray mustbe drawn using a ruler

Least value
of 121 was
found using
perpendicular
distance from
(0,0) to x-y-1=0
OR
Using Pythagoras
Theorem

 $|Z_1| = \sqrt{\left(\frac{\sqrt{6}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2}$ (ن) (ے 122 = V12+(-1)2 $= \sqrt{\frac{6}{4} + \frac{2}{4}}$ $= \sqrt{2}$ $=\sqrt{2}$ ang Z1 = tan (-1/2) arg Z2 = tan(-11) $= \tan \left(-\frac{1}{\sqrt{3}}\right)$ = -II= tan(-1) $Z_1 = \sqrt{2} \left(\left(\cos \left(-\frac{\pi}{6} \right) + i \operatorname{Sm} \left(-\frac{\pi}{6} \right) \right)$ $Z_2 = \sqrt{2} \left(\left(\cos \left(-\frac{\pi}{4} \right) + i \operatorname{Sm} \left(-\frac{\pi}{4} \right) \right)$ Let Ciso = Coso +iSmo $\frac{Z_1}{Z_2} = \frac{\sqrt{2} \operatorname{Cis}\left(-\frac{\pi}{6}\right)}{\sqrt{2} \operatorname{Cis}\left(-\frac{\pi}{4}\right)}$ $= \operatorname{Cais}\left(-\frac{\pi}{4} - \frac{\pi}{4}\right)$ $= C_{1S} \left(-\frac{2\pi}{12} + \frac{3\pi}{12} \right)$ = CIS II = Cas II + i Sm II $\frac{Z_1}{Z_2} = \frac{\sqrt{6} - \sqrt{2}}{2}$ $= \frac{\sqrt{6-i\sqrt{2}} \times (1+i)}{2(1-i)} \times \frac{(1+i)}{(1+i)}$ $\frac{\sqrt{6+\sqrt{6}i}-i\sqrt{2}-i^2\sqrt{2}}{2(1-i^2)}$ $= \frac{\sqrt{6+\sqrt{2}} + \sqrt{6-\sqrt{2}}}{4}$ $= \frac{\sqrt{6+\sqrt{2}} + \sqrt{6-\sqrt{2}}}{\sqrt{12}}$ $= \frac{\sqrt{6+\sqrt{2}} + \sqrt{6-\sqrt{2}}}{\sqrt{12}}$ Equating Real Parts CosTT = V6+V2

1 Mark Lor both | Z1 | and |Z2 | correct | Mark Lan ang ZI 1 Mark Lar Arg Z2 3 Marks only If both Zi and 22 expressed in mod-arg form. 1 Mark for (is (-11 - -11) = (i)(II) O Marks for $\frac{C_{1}s^{-1}\overline{L}}{C_{1}s^{-1}\overline{L}} = C_{1}s^{-1}\overline{L}$ Must SHOYY Othervise Approach Cos II = Cos II - II) Cas 2A = 2 Cos 2A -Cos II = 2 las II - 1

Asst 1 Nov 2014 X2 MATHEMATICS: Question 3	,	Page 1014
Suggested Solutions	Marks	Marker's Comments
a);) Using Binomial Expansion;		
$(\cos\theta + i\sin\theta)^{2} = \cos\theta + 5i\cos\theta\sin\theta$		
+10i2cos 0 sin20 + 10i2cos 0 sin20 + 5i4cos 0 sin40	;	·
+ i'sin'0		
= (cos 0 - 10 cos 0 sin 0 + 5 cos 0 sin 40) + i (5 cos 40 sin 0 - 10 cos 0 sin 0 + sin 6))	
also, by de Moivre's Theorem		Words (de Mouvre)
$(\cos\theta + i\sin\theta)^5 = \cos 50 + i\sin 50$	1	necessary for mark.
ii) Equating real parts of each		for this far and
expansion $\cos 50 = \cos 0 - 10\cos^3 \theta \sin \theta + 5\cos \theta \sin^4 \theta$	1	for this far and the wording
= cos 0 - 10 cos 30 (1-cos 0) + 5 cos 0 (1-cos 0)		,
= cos 0 - 10 cos 0 + 10 cos 0 + 5 cos 0		
-10 cm³0 + 5 cm²0		
= 16cos 0 - 20cos 0 + 5cos 0		
iii) The 5 zeroes of this expression will be 5 distinct zeroes of		
cos 50 = 0 coo Then 50 = \(\frac{1}{2}\), \(\frac{37}{2}\), \(\frac{77}{2}\), \(\frac{77}{2}\), \(\frac{77}{2}\)	1	
18 coo men 0 = 70,70,70,90		
Factoring out the zero cos 0=0 leaves a polynomial of degree 4	· .	
with zeros cos \$70, cos \$70, cos 770, cos 911		

Asst 1 (Nov 2014) X2MATHEMATICS: Question. 3.	··· - ·	Page 2 57 4
Suggested Solutions	Marks	
The product of the roots: "%" = 5/16 COSTI		
b) i) $2\cos\theta = x + \frac{1}{x}$ $x^2 - 2x\cos\theta + 1 = 0$ $x = 2\cos\theta \pm 1\sin\theta$ $= \cos(\pm\theta) + i\sin(\pm\theta)$ $= \cos(\pm\theta) + i\sin(\pm\eta\theta)$ (de Moine) $= \cos(\pm\eta\theta) + i\sin(\pm\eta\theta)$ (de Moine) $= \cos(\pm\eta\theta) + i\sin(\pm\eta\theta)$ (of Moine) $= \cos(\pm\eta\theta) + i\sin(-\eta\theta)$ (of Moine) $= \cos(\pm\eta\theta) + i$		It was allowed (although not strictly correct) if the statement $x = coo + i sin 0$ was made without proof.

Asst 1 (Nov 2014) X2MATHEMATICS: Question 3.		page 3 of 4
Suggested Solutions	Mark	Marker's Comments
lutting $\cos 2\theta = 2\cos^2 \theta - 1$, $20\cos^2 \theta - 22\cos \theta + 6 = 0$		
10 co 20 - 11 co 0 + 3 = 0	1	
$(5\cos \theta - 3)(2\cos \theta - 1) = 0$		
cos 0 = 3/5 or /2		
== + \frac{1}{2}		
2C= 000+ism0		
$= \underbrace{3 \pm 4i}_{5} \text{ or } \underbrace{1 \pm i\sqrt{3}}_{2}$		
Tan alternative is to modify		
the original equation to		
$5\left(x+\frac{1}{x}\right)^{2}-11\left(x+\frac{1}{x}\right)+6=0$	ı	
and solve for $(x+\frac{1}{x})$. It is		
then necessary to solve a quad- ratic equation for each rost,		
ratic equation for each root, giving the same 4 roots of 2.		·
c) i) It wis a root of z3=1, then		There was a lot
$\omega^3 = 1$		with z. Substitute
i.e. $\omega^3 - 1 = 0$ $(\omega - 1)(\omega^2 + \omega + 1) = 0$		wearly as shown here.
But W#1 since w is non real	·•	
$-\frac{1}{2}\omega^{2}+\omega+1=0$]	

Asst 1 (Nov 2014) X2 MATHEMATICS: Question 3		Page 4 8 4
Suggested Solutions	Marks	_
c) i) (atternative). 94 ω is a non real root, then ω^2 is also a root. $(\omega^2)^3 = (\omega^3)^2 = 1$ 94 is a different root $\omega^2 - \omega = \omega(\omega - 1) \neq 0$ and 1 is clearly a real root. Sum of the roots $1 + \omega + \omega^2 = -\frac{1}{2} = 0$ ii) $1 + \omega = -\omega^2$ $1 + \omega^2 = -\omega$ $\omega^2 = \omega^2$		
$\frac{1}{1+\omega} = \frac{\omega}{-\omega^2} \qquad \frac{\omega^2}{1+\omega^2} = \frac{\omega}{-\omega}$ $= -\frac{1}{\omega}$ $= -\omega$		
$ \frac{1}{(\omega)^{k}} + \left(\frac{\omega^{2}}{1+\omega^{2}}\right)^{k} = \left(-\frac{1}{\omega}\right)^{k} + \left(-\frac{\omega}{\omega}\right)^{k} $ $ = \left(-1\right)^{k} \left(\frac{1}{\omega}^{k} + \omega^{k}\right) $.	
But from (b) i) since $W = \text{Cis} \frac{2\pi}{3}$, $W + \frac{1}{\omega} = 2 \cos \frac{2\pi}{3}$	1	There were a lot of errors and poor explanations
$\omega^{k} + L = 2 \cos \frac{2k\pi}{3}$		people solved $z^3=1$ and used
$-1 \cdot \left(\frac{\omega}{1+\omega}\right)^{k} + \left(\frac{\omega^{2}}{1+\omega^{2}}\right)^{k} = (-1)^{k} 2 \cos \frac{2k\pi}{3}$	1	k as a parameter. This was to be
If w= cis 4T had been used, the same result would occur since,	(avoided at all costs
cos 4kT/3 = cos 2kT/3 for any kEZ		,

2 5 1 7777777 5 1 222	1,	
MATHEMATICS Extension 2: Questi Suggested Solutions	on Marks	Marker's Comments
a) $ Z = 3$ $ W = $ $ Z - W ^{2} = (Z - W)(Z - W)$ $= Z ^{2} + W ^{2} - (ZW + WZ)$ $= Z ^{2} + W ^{2} - (ZW + WZ)$	(1)	Accepted many methods involving manipulations of LHS and RHS.
(b) Let R represent complex rumber Z3		"special cases" This was a "show" question
IN A ORQ and DOPA	0	Must give complete proof for similar triangles waith
20AP = 20RR (Gwen) 20AP = 2ROQ (Gwen) AORQ III AOAP (Eguiangula 1. OA = OP OR OR ignesyanding sides in similar. Analyses and in she same rasio	(1)	ratio of moduli with
	0	full reason must show
$= \frac{2A0P + 2A0P + 2PO}{2A0P}$ $= \frac{2A0P}{A0R}$ $= \frac{2A0P}{A0P}$ $= 2A0$		orgs interms of angles. No loss Conclusion not coritten

	/;	
MATHEMATICS Extension 2: Questi Suggested Solutions	on Marks	Marker's Comments
	1	0 is obtase
<u>с</u> в	0	$ Z_1 = Z_2 = 1$
2 2 0 >5C	0	Must show points A, B, C correctly.
$ \begin{array}{rcl} 11) & Z_4 & = & (080+1) + 181n0 \\ \hline 2) & Z_3 & = & -1 + (080+181n0) \\ & = & (080-1) + 181n0 \\ \hline 24 & & (080+1) + 181n0 & (080-1) & (080-1) & (080-1) & (080-1) & (080-1) & (080-1) & (080-1) & (080-1) & (080-1) & (080-1) & (080-1) & (080-1) & (080-1) & (08$	-1-1's	(D) Malizing 100) 24 23 100) unsimplified
$= \frac{\cos^2 Q - 1 - 1\sin Q(\cos Q + 1) + 1\sin Q}{(\cos Q - 1)^2 + \sin^2 Q}$	no (co	30-1)+SIn2
$= \frac{X - X - 1 \sin \theta \cos \theta - 1 \sin \theta}{\cos^2 \theta - 2\cos \theta + 1 + \sin^2 \theta}$	+1810	3008Q-131nQ
= -2ismo 2-2iosQ = isino		1) correctly simplifying
Zy is purely imaginery Zz Tz < 0 = TT (2nd Quadrent)		1 purely imaginery
$\frac{12}{\cos \theta - 1} < 0$ $\frac{\cos \theta - 1}{\cos \theta - 1} < 0$		D show for \$\$<0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
in ang [zu j = - TI) zz		O 7/2.
ang $\begin{bmatrix} \frac{24}{23} \end{bmatrix} = -\frac{\pi}{2}$ ang $\frac{24}{23} = -\frac{\pi}{2}$		1) difference in args is 1/2
To so angle be fiveen Zz and	Zy	1 z3, z4 are diagonals
are diagonals of OACB	ar	

E: URAH M Fac Admin\Assessment info\Suggested Mk solns template V4.doc

BUT MUST REER to part (a)